1,754 research outputs found

    Entanglement of a Single Spin-1 Object: An Example of Ubiquitous Entanglement

    Get PDF
    Using a single spin-1 object as an example, we discuss a recent approach to quantum entanglement. The key idea of the approach consists in presetting of basic observables in the very definition of quantum system. Specification of basic observables defines the dynamic symmetry of the system. Entangled states of the system are then interpreted as states with maximal amount of uncertainty of all basic observables. The approach gives purely physical picture of entanglement. In particular, it separates principle physical properties of entanglement from inessential. Within the model example under consideration, we show relativity of entanglement with respect to dynamic symmetry and argue existence of single-particle entanglement. A number of physical examples are considered.Comment: 12 pages, 2 figure : title has been changed, paper is re-organized, new section "Violation of Bell-type condition by single spin-1" is adde

    A real Lorentz-FitzGerald contraction

    Get PDF
    Many condensed matter systems are such that their collective excitations at low energies can be described by fields satisfying equations of motion formally indistinguishable from those of relativistic field theory. The finite speed of propagation of the disturbances in the effective fields (in the simplest models, the speed of sound) plays here the role of the speed of light in fundamental physics. However, these apparently relativistic fields are immersed in an external Newtonian world (the condensed matter system itself and the laboratory can be considered Newtonian, since all the velocities involved are much smaller than the velocity of light) which provides a privileged coordinate system and therefore seems to destroy the possibility of having a perfectly defined relativistic emergent world. In this essay we ask ourselves the following question: In a homogeneous condensed matter medium, is there a way for internal observers, dealing exclusively with the low-energy collective phenomena, to detect their state of uniform motion with respect to the medium? By proposing a thought experiment based on the construction of a Michelson-Morley interferometer made of quasi-particles, we show that a real Lorentz-FitzGerald contraction takes place, so that internal observers are unable to find out anything about their `absolute ' state of motion. Therefore, we also show that an effective but perfectly defined relativistic world can emerge in a fishbowl world situated inside a Newtonian (laboratory) system. This leads us to reflect on the various levels of description in physics, in particular regarding the quest towards a theory of quantum gravity.Comment: 6 pages, no figures. Minor changes reflect published versio

    Vibrational signature of broken chemical order in a GeS2 glass: a molecular dynamics simulation

    Full text link
    Using density functional molecular dynamics simulations, we analyze the broken chemical order in a GeS2_2 glass and its impact on the dynamical properties of the glass through the in-depth study of the vibrational eigenvectors. We find homopolar bonds and the frequencies of the corresponding modes are in agreement with experimental data. Localized S-S modes and 3-fold coordinated sulfur atoms are found to be at the origin of specific Raman peaks whose origin was not previously clear. Through the ring size statistics we find, during the glass formation, a conversion of 3-membered rings into larger units but also into 2-membered rings whose vibrational signature is in agreement with experiments.Comment: 11 pages, 8 figures; to appear in Phys. Rev.

    Nonlinear analysis of a simple model of temperature evolution in a satellite

    Get PDF
    We analyse a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite's temperature is analysed by qualitative, perturbation and numerical methods, which show that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.Comment: 13 pages, 4 figures (5 EPS files

    Hidden variables with nonlocal time

    Full text link
    To relax the apparent tension between nonlocal hidden variables and relativity, we propose that the observable proper time is not the same quantity as the usual proper-time parameter appearing in local relativistic equations. Instead, the two proper times are related by a nonlocal rescaling parameter proportional to |psi|^2, so that they coincide in the classical limit. In this way particle trajectories may obey local relativistic equations of motion in a manner consistent with the appearance of nonlocal quantum correlations. To illustrate the main idea, we first present two simple toy models of local particle trajectories with nonlocal time, which reproduce some nonlocal quantum phenomena. After that, we present a realistic theory with a capacity to reproduce all predictions of quantum theory.Comment: 16 pages, accepted for publication in Found. Phys., misprints corrected, references update

    Long-range forecasts of UK winter hydrology

    Get PDF
    Seasonal river flow forecasts are beneficial for planning agricultural activities, river navigation, and for management of reservoirs for public water supply and hydropower generation. In the United Kingdom (UK), skilful seasonal river flow predictions have previously been limited to catchments in lowland (southern and eastern) regions. Here we show that skilful long-range forecasts of winter flows can now be achieved across the whole of the UK. This is due to a remarkable geographical complementarity between the regional geological and meteorological sources of predictability for river flows. Forecast skill derives from the hydrogeological memory of antecedent conditions in southern and eastern parts of the UK and from meteorological predictability in northern and western areas. Specifically, it is the predictions of the atmospheric circulation over the North Atlantic that provides the skill at the seasonal timescale. In addition, significant levels of skill in predicting the frequency of winter high flow events is demonstrated, which has the potential to allow flood adaptation measures to be put in place

    Structural changes in borosilicate glasses as a function of Fe2O3 content: A multi-technique approach

    Get PDF
    Three series of borosilicate glasses were prepared, ranging from simple ternary sodium borosilicate glasses (SCFe series), to complex borosilicate glasses (CCFe Series), to high-level radioactive waste analogue glasses (HAFe series). 57Fe Mössbauer and Fe K-edge XANES spectroscopies showed that the iron exists exclusively as Fe3+ in predominantly distorted tetrahedral structures ([4]Fe3+), with evidence for lower abundances of higher-coordinated [5 or 6]Fe3+. Raman, B K-edge XANES, and XPS spectroscopies qualitatively demonstrated that Fe3+ preferentially integrates into the borosilicate network through the silicate sub-network in the simple glasses, whereas in the complex glasses it preferentially integrates through the borate sub-network. The [4]B3+ fraction for the SCFe and CCFe glasses showed minimal changes as a function of Fe content, indicating that Fe concentration has no effect on boron coordination and is- therefore unlikely to be competing with [4]B3+ groups for charge compensation, qualitatively supporting the presence of competing tetrahedral avoidance hierarchies

    Parity proofs of the Kochen-Specker theorem based on the 24 rays of Peres

    Full text link
    A diagrammatic representation is given of the 24 rays of Peres that makes it easy to pick out all the 512 parity proofs of the Kochen-Specker theorem contained in them. The origin of this representation in the four-dimensional geometry of the rays is pointed out.Comment: 14 pages, 6 figures and 3 tables. Three references have been added. Minor typos have been correcte

    Colliding Plane Waves in String Theory

    Full text link
    We construct colliding plane wave solutions in higher dimensional gravity theory with dilaton and higher form flux, which appears naturally in the low energy theory of string theory. Especially, the role of the junction condition in constructing the solutions is emphasized. Our results not only include the previously known CPW solutions, but also provide a wide class of new solutions that is not known in the literature before. We find that late time curvature singularity is always developed for the solutions we obtained in this paper. This supports the generalized version of Tipler's theorem in higher dimensional supergravity.Comment: latex, 25 pages, 1 figur
    corecore